Hybrid Consensus Learning for Legume Species and Cultivars Classification

نویسندگان

  • Mónica G. Larese
  • Pablo M. Granitto
چکیده

In this work we propose an automatic method aimed at classifying five legume species and varieties using leaf venation features. Firstly, we segment the leaf veins and measure several multiscale morphological features on the vein segments and the areoles. Next, we build a hybrid consensus of experts formed by five different automatic classifiers to perform the classification using the extracted features. We propose to use two strategies in order to assign the importance to the votes of the algorithms in the consensus. The first one is considering all the algorithms equally important. The second one is based on the accuracy of the standalone classifiers. The performance of both consensus classifiers show to outperform the standalone classification algorithms in the five class recognition task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

An In Vitro Procedure for Phenotypic Screening of Growth Parameters and Symbiotic Performances in Lotus corniculatus Cultivars Maintained in Different Nutritional Conditions

The establishment of legumes crops with phenotypic traits that favour their persistence and competitiveness in mixed swards is a pressing task in sustainable agriculture. However, to fully exploit the potential benefits of introducing pasture-based grass-legume systems, an increased scientific knowledge of legume agronomy for screening of favourable traits is needed. We exploited a short-cut ph...

متن کامل

APPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES

An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014